
Outline

5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-30
5.6 File status flags (and fcntl()) 5-37
5.7 Exercises 5-42
5.8 Other file I/O interfaces 5-47

Relationship between file descriptors and open files

Multiple file descriptors can refer to same open file

3 kernel data structures describe relationship:

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-22 §5.4

File descriptor table

Per-process table with one entry for each FD opened by process:

Flags controlling operation of FD (close-on-exec flag)

Reference to open file description

struct fdtable in include/linux/fdtable.h

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-23 §5.4

Table of open file descriptions (open file table)

System-wide table, one entry for each open file on system:

File offset

File access mode (R / W / R-W, from open())

File status flags (from open())

Reference to inode object for file

struct file in include/linux/fs.h

Following terms are commonly treated as synonyms:

open file description (OFD) (POSIX)

open file table entry or open file handle
" Ambiguous terms; POSIX terminology is preferable

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-24 §5.4

(In-memory) inode table

System-wide table drawn from file inode information in filesystem:

File type (regular file, FIFO, socket, . . .)

File permissions

Other file properties (size, timestamps, . . .)

struct inode in include/linux/fs.h

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-25 §5.4

Duplicated file descriptors (intraprocess)

A process may have multiple FDs referring to same OFD

Achieved using dup() or dup2()

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-26 §5.4

Duplicated file descriptors (between processes)

Two processes may have FDs referring to same OFD

Can occur as a result of fork()

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-27 §5.4

Distinct open file table entries referring to same file

Two processes may have FDs referring to distinct OFDs that refer
to same inode

Two processes independently open()ed same file

Process A

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 20

Process B

File descriptor table

fd

flags

file

ptr
fd 0

fd 1

fd 2

fd 3

Table of open file

descriptions (system-wide)

file

offset

status

flags

inode

ptr
0

23

73

86

Inode table

(system-wide)

file metadata;

data block ptrs

224

1976

5139

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-28 §5.4

Why does this matter?

Two different FDs referring to same OFD share file offset

(File offset == location for next read()/write())

Changes (read(), write(), lseek()) via one FD visible via
other FD

Applies to both intraprocess & interprocess sharing of OFD

Similar scope rules for status flags (O_APPEND, O_SYNC, . . .)
Changes via one FD are visible via other FD

(fcntl(F_SETFL) and fcntl(F_GETFL))

Conversely, changes to FD flags (held in FD table) are
private to each process and FD

kcmp(2) KCMP_FILE operation can be used to test if two
FDs refer to same OFD

Linux-specific

[TLPI §5.4]

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-29 §5.4

Outline

5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-30
5.6 File status flags (and fcntl()) 5-37
5.7 Exercises 5-42
5.8 Other file I/O interfaces 5-47

A problem

./myprog > output.log 2>&1

What does the shell syntax, 2>&1, do?

How does the shell do it?

Open file twice, once on FD 1, and once on FD 2?

FDs would have separate OFDs with distinct file offsets ⇒

standard output and error would overwrite

File may not even be open()-able:

e.g., ./myprog 2>&1 | less

Need a way to create duplicate FD that refers to same OFD

[TLPI §5.5]

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-32 §5.5

Duplicating file descriptors

#include <unistd.h>
int dup(int origfd);

Arguments:

origfd : an existing file descriptor

Returns new file descriptor that refers to same OFD

New file descriptor is guaranteed to be lowest
available

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-33 §5.5

Duplicating file descriptors

FDs 0, 1, and 2 are normally always open, so shell can
achieve 2>&1 redirection by:

close(STDERR_FILENO); /* Frees FD 2 */
newfd = dup(STDOUT_FILENO); /* Reuses FD 2 */

But what if FD 0 had been closed beforehand?
dup() would reuse FD 0...

We need a better API

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-34 §5.5

Duplicating file descriptors

#include <unistd.h>
int dup2(int origfd, int newfd);

Like dup(), but uses newfd for the duplicate FD

Silently closes newfd if it was open

Close + reuse of newfd is done as an atomic step

Important: otherwise, newfd might be re-used in between

Does nothing if newfd == origfd

Returns new file descriptor (i.e., newfd) on success

dup2(STDOUT_FILENO, STDERR_FILENO);

See dup2(2) manual page for more details

[TLPI §5.5]

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-35 §5.5

Understanding dup2(origfd, newfd)

FD table

origfd

newfd

OFD table

OFD-a

OFD-b

inode table

inode-a

inode-b

FD table

origfd

newfd

OFD table

OFD-a

inode table

inode-a

If newfd was an open FD, OFD-b will be released if newfd was the last
FD that referred to it

After dup2(), origfd and newfd share file offset and file status flags

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-36 §5.5

Outline

5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-30
5.6 File status flags (and fcntl()) 5-37
5.7 Exercises 5-42
5.8 Other file I/O interfaces 5-47

File status flags

Control semantics of I/O on a file

(O_APPEND, O_NONBLOCK, O_SYNC, . . .)

Associated with open file description

Set when file is opened

Can be retrieved and modified using fcntl()

[TLPI §5.3]

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-38 §5.6

fcntl() : file control operations

#include <fcntl.h>
int fcntl(int fd, int cmd /* , arg */);

Performs control operations on an open file

Arguments:

fd : file descriptor

cmd : the desired operation

arg : optional, type depends on cmd

Return on success depends on cmd ; –1 returned on error

Many types of operation

file locking, signal-driven I/O, file descriptor flags . . .

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-39 §5.6

Retrieving file status flags and access mode

Retrieving flags (both access mode and status flags)

int flags = fcntl(fd, F_GETFL);

Check access mode

int amode = flags & O_ACCMODE;
if (amode == O_RDONLY || amode == O_RDWR)

printf("File is readable\n");

" ’read’ and ’write’ are not separate bits!

if (flags & O_RDONLY) /* Wrong!! */
printf("File is readable\n");

Access mode is a 2-bit field that is an enumeration:

00 == O_RDONLY; 01 == O_WRONLY; 10 == O_RDWR

(O_ACCMODE == 112)

Access mode can’t be changed after file is opened

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-40 §5.6

Retrieving and modifying file status flags

Retrieving file status flags

int flags = fcntl(fd, F_GETFL);
if (flags & O_NONBLOCK)

printf("Nonblocking I/O is in effect\n");

Setting a file status flag

int flags = fcntl(fd, F_GETFL); /* Retrieve flags */
flags |= O_APPEND; /* Set "append" bit */
fcntl(fd, F_SETFL, flags); /* Modify flags */

" Not thread-safe...

(But in many cases, flags can be set when FD is created, e.g.,
by open())

Clearing a file status flag

int flags = fcntl(fd, F_GETFL); /* Retrieve flags */
flags &= ~O_APPEND; /* Clear "append" bit */
fcntl(fd, F_SETFL, flags); /* Modify flags */

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-41 §5.6

Outline

5 File I/O: Further Details 5-1
5.1 The file offset and lseek() 5-3
5.2 Exercises 5-11
5.3 Atomicity 5-17
5.4 Relationship between file descriptors and open files 5-20
5.5 Duplicating file descriptors 5-30
5.6 File status flags (and fcntl()) 5-37
5.7 Exercises 5-42
5.8 Other file I/O interfaces 5-47

Exercise

1 Show that duplicate file descriptors share file offset and file status flags by writing a
program ([template: fileio/ex.fd_sharing.c]) that:

Implements the function printFileDescriptionInfo(), which, given a file
descriptor as an argument, prints the file descriptor number as well as the file
offset and the state of the O_APPEND file status flag associated with that file
descriptor. For readability, all three values should be printed on one line.

Opens an existing file (supplied as argv[1]) and duplicates (dup()) the
resulting file descriptor, to create a second file descriptor.

Uses the printFileDescriptionInfo() function to display the file offset and the
state of the O_APPEND file status flag via the first file descriptor.

Initially the file offset will be zero, and the O_APPEND flag will not be
set

Changes the file offset (lseek(), slide 5-5) and enables (turns on) the
O_APPEND file status flag (fcntl(), slide 5-41) via the second file descriptor.

Uses the printFileDescriptionInfo() function to display the file offset and the
state of the O_APPEND file status flag via the first file descriptor.

Hints:

Remember to update the Makefile!

while inotifywait -q . ; do echo -e '\n\n'; make; done

System Programming Fundamentals ©2025 M. Kerrisk File I/O: Further Details 5-44 §5.7

